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Objectives

• Develop a spreadsheet based tool to calculate the

heat transfer coefficients and flame temperature

during preheating of the nozzle.

• Develop a spreadsheet based tool to model the

heat transfer in submerged entry nozzles during theheat transfer in submerged entry nozzles during the

three stages: preheat, cool down and casting.

• Compare the heat transfer characteristics of two

refractory materials: doloma graphite and alumina

graphite
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Model & computational domain
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Governing Equation and finite difference 

equation for interior nodes

• Heat conduction equation in cylindrical co–ordinates [1]
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• Using Taylor series [1] expansion, the equation is discretized 

as:

Finite Difference Equations (Side nodes with 

convection)

• Heat balance on side half cell gives:
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Finite Difference Equations (Interface 

Nodes)
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Steel Shell Solidification Model

• Enthalpy formulation of the transient 1-D heat conduction 

equation is solved:
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• Top row temperatures:

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Varun Kumar Singh • 8

i pourT T=
• Top row enthalpies [2]:
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Steel Shell Solidification Model
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• Enthalpy of interior nodes:

• Enthalpy of side nodes with convection:
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• After the enthalpy has been calculated the temperatures are then calculated 

using [2] :

Validation of Steady State Aspect of the 

Model

• Compared the results of the simulation when it reaches steady state with 

analytical Solution.

• Governing equation for Analytical solution [1]:

• Heat flux through the nozzle is calculated using:
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• Heat flux through the nozzle is calculated using:

• Finally, the temperatures in the nozzle are : 
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Simulation conditions for validation of steady state 

aspect of the model

Label Symbol Value Units

Outer Radius of Refractory ro 67.5 mm

Bulk Refractory Wall Thickness t
29.5 mm

Initial Nozzle Temperature
Tintital 27* °C

Ambient Temperature 
Tambient 27 °C

Flame Temperature Tflame 1460 °C

Internal Convection heat transfer 
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Internal Convection heat transfer 

Coefficient (Forced) hflame 50 W/(m2K)

External Convection heat 

transfer Coefficient (Free)
hambient 7.3 W/(m2K)

Thermal Conductivity
K 18.21 W/m-K

Specific Heat Cp 804* J/kg-K

Density ρ 2347 kg/m3

Stefan Boltzman's Constant
σ 5.67E-8

Emmissivity ε 0.96

* Parameters required by transient simulation method

Validation – Steady state aspect of the 

model

• The results of the simulation are in good agreement with that of the analytical 

solution

Single Layer, No radiation Single Layer, with radiation
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Four Layers, No radiation Four Layers, with radiation



Validation of transient aspect of the model

• Compare the results of the simulation with that of the lumped thermal heat 

capacity model.

• System undergoing a transient thermal response to a heat transfer process 

has a nearly uniform temperature and small differences of temperature within 

the system can be ignored.

• The model is valid only if the Biot number (hL/k) < 0.1

• The governing equation is [1]
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• The governing equation is [1]

( )p e

dT
VC hA T T

dt
ρ = − −

• To solve this equation, one initial condition is required:

t=0: T=To.

Solving the equation, the temperature at any time,t can be calculated from:

where To is the initial surface temperature, Te is the ambient temperature. 
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Simulation Parameters – Validation of 

transient aspect of the model

Label Symbol Value Units

Outer Radius of Refractory ro 67.5 mm

Bulk Refractory Wall Thickness t
29.5 mm

Initial Nozzle Temperature
Tintital 1100 °C

Ambient Temperature 
Tambient 27 °CTambient 27

External Convection heat transfer 

Coefficient (Free)
hambient 7.3 W/(m2K)

Thermal Conductivity
K 1000 W/m-K

Specific Heat Cp 804 J/kg-K

Density ρ 2347 kg/m3

Stefan Boltzman's Constant
σ 5.67E-8

Emmissivity ε 0.96
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Comparison of Results of lumped model and 

transient simulation

• The results of the simulation are in good agreement with that of the 

lumped thermal heat capacity model
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Calculation of Flame temperature and heat 

transfer coefficients

Input Page of the tool
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• It is assumed that the fuel is burning in air.

• The user is asked to select the fuel and amount of excess air relative to the

stoichiometric amount.

• The nozzle orifice area is required to calculate the mass flow rate.

• The mass flow rate sheet of the tool calculates the mass flow rate for range of

pressures. The user should select the mass flow rate desired and input on this

page.

•



Properties of mixture of gases in 

combustion products
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• Thermal conductivity of the mixture of gases is calculated using Saxena and  

Mason [3]:
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= mole fractions of component i and j,i jy y
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Where are  the viscosities of pure i and j respectively

And                     are the molecular weights of pure i and j

jη,iη
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• Thermal diffusivity, kinematic viscosity, density and specific heat are 

calculated using the particle mixture rule.

Combustion reaction and flame temperature 

calculation

• Stoichiometric Reaction

4 2 2 2 2 22 7.5 2 7.5CH O � CO H O �+ + → + +

• Reaction with 100 % excess air

4 2 2 2 2 2 24 15 2 15 2CH O � CO H O � O+ + → + + +
• Flame temperature calculation [4]

The enthalpy of formation of products is balanced with that of the reactants:
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The enthalpy of formation of products is balanced with that of the reactants:
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• Balancing the enthalpy of formation in the above equation gives the 

flame temperature



Validation of flame temperature calculation

• The tool was run for methane fuel and 100 % excess air.

• The results were compared with a commercial software Gaseq.

• The flame temperature calculated from the tool is 1480.6 K

• The results from the tool are shown in the figure below:
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• The two tools are found to be in good agreement.

Heat transfer coefficient calculation

• Free Convection to ambient:

– The Churchill and Chu [1] equation for flow over a vertical flat plate is used
2

1 / 6
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a v g
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� u
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• Forced Convection from flame:
The Petukhov, Kirillov, and Popov [1] is used

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • Varun Kumar Singh • 20

The Petukhov, Kirillov, and Popov [1] is used

[ ]
1/ 2 2/3
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Df
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f
=
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• The forced heat transfer coefficient was calculated to be 49.3 W/m2K. 

• The free heat transfer coefficient was calculated to be 6.9 W/m2K 



Output page of the tool
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Temperature variation with time
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Conclusions

• Alumina graphite nozzle reaches 5% higher temperature than 

doloma graphite (700 vs 670 °C) after equal preheat time of 

1hour), so skulling is about the same.

• Air entrainment should be decreased, because excess air 

reduces the flame temperature. 

• The mass flow rate of the reactants should be increased to 
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• The mass flow rate of the reactants should be increased to 

have a higher heat transfer coefficient, thereby increasing 

nozzle temperatures after preheat.

• Steady state is not reached even after an hour of preheating 

of a nozzle (with 30-mm thick wall). The preheating time 

should be increased.
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