

Modeling heat transfer and skullclogging in submerged entry nozzles

Varun Kumar Singh, B.G. Thomas

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Objectives

- Develop a spreadsheet based tool to calculate the heat transfer coefficients and flame temperature during preheating of the nozzle.
- Develop a spreadsheet based tool to model the heat transfer in submerged entry nozzles during the three stages: preheat, cool down and casting.
- Compare the heat transfer characteristics of two refractory materials: doloma graphite and alumina graphite

.

Model & computational domain

Main page of the tool

Outer Radius of Refractory	67.5	mm	Se	elect Sheet to View	Graph	-	View
Steel Layer Thickness	9.5	mm			Graph		
Inner Surface Refractory Layer Thickness 1	2.0	mm			Preheat		
Inner Surface Refractory Layer Thickness 2	8.0	mm			Cooldown		
Bulk Refractory Wall Thickness	8.0	mm			Steel Properties		
Outer Surface Refractory Layer Thickness 1	4.0	mm			Inner Surface Refractory Layer 1 Inner Surface Refractory Layer 2		
Outer Surface Refractory Layer Thickness 2	4.0	mm			Bulk Refractory Layer		
Insulation Layer Thickness	3.5	mm			Outer Surface Refractory Layer	1	
					Insulation Layer	2	
Ambient Temperature	27	°C			Material Properties Database		
Initial Nozzle Temperature	30	°C					
FlameTemperature	1207.6	°C					
Internal heat transfer Coefficient (forced)	49.3	W/(m ² K)					
External heat transfer Coefficient (free)	6.86	W/(m ² K)					
			-				
Preheat Time	120	min.	Maximum Allowed (min.)	148	Check		
Cooldown Time	15	min.	Maximum Allowed (min.)	28	Check		
			_				
Pour Temperature	1550	°C]				
Solidification Temperature	1525	°C					
Casting Speed	4	ton/minute					
4 Times to plot during preheat (min.)	10	20	50	100	Calculate		
2 Times to plot during Cooldown (min.)	5	10	15				

•

Varun Kumar Singh

6

.

Atinuous Casting Consortium

Steel Shell Solidification Model

 Enthalpy formulation of the transient 1-D heat conduction equation is solved:

$$\rho \frac{\partial H}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(kr \frac{\partial T}{\partial r} \right)$$

• Top row temperatures:

$$T_i = T_{pour}$$

Top row enthalpies [2]:

$$H_i = C_p * T_{pour} + L_f * \operatorname{int}\left(\frac{T_{pour}}{T_{solidus}}\right)$$

where $L_{\rm f}$ is the latent heat of fusion.

8

.

• Enthalpy of interior nodes:

$$H_i^{n+1} = H_i^n + \frac{k\Delta t}{\rho} \left[T_{i+1}^n \left(\frac{1}{\Delta r^2} + \frac{1}{2r\Delta r} \right) + T_{i-1}^n \left(\frac{1}{\Delta r^2} - \frac{1}{2r\Delta r} \right) - \frac{2}{\Delta r^2} T_i^n \right]$$

• Enthalpy of side nodes with convection:

$$H_i^{n+1} = H_i^n + \frac{2h\Delta t}{\rho\Delta r} \Big[T_{steel} - T_i^n \Big] + \frac{2k\Delta t}{\rho r\Delta r} \left(r + \frac{\Delta r}{2} \right) \left(\frac{T_i^n - T_{i+1}^n}{\Delta r} \right)$$

• After the enthalpy has been calculated the temperatures are then calculated using [2] :

$$T_i = \min\left[\frac{H_i}{C_p}, \max\left\{\frac{H_i - L_f}{C_p}, T_{sol}\right\}\right]$$

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

Validation of Steady State Aspect of the Model

- Compared the results of the simulation when it reaches steady state with analytical Solution.
- Governing equation for Analytical solution [1]:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(kr\frac{\partial T}{\partial r}\right) = 0 \qquad T_{\text{frame}} \qquad r \qquad r$$
Heat flux through the nozzle is calculated using: h_{frame}, T_1

$$q = \frac{T_{flame} - T_{ambient}}{\frac{1}{h_{flame}r_i} + \frac{\ln(r_o/r_i)}{k} + \frac{1}{h_{ambient}r_o}} \qquad r_i$$
Finally, the temperatures in the nozzle are :
$$r_i = r_o - t$$

$$T_1 = T_{flame} - \frac{q}{h_{flame}r_i}$$

$$T = T_1 - \frac{q}{k}\ln\left(\frac{r}{r_i}\right)$$

 $T_2 = T_{ambient} + \frac{q}{h_{ambient}r_o}$ University of Illinois at Urbana-Champaign

.

.

Varun Kumar Singh

.

Simulation conditions for validation of steady state aspect of the model

Label	Symbol	Value	Units
Outer Radius of Refractory	r _o	67.5	mm
Bulk Refractory Wall Thickness	t	29.5	mm
Initial Nozzle Temperature	T _{intital}	27*	°C
Ambient Temperature	T _{ambient}	27	°C
Flame Temperature	T _{flame}	1460	°C
Internal Convection heat transfer Coefficient (Forced)	h _{flame}	50	W/(m²K)
External Convection heat transfer Coefficient (Free)	h _{ambient}	7.3	W/(m²K)
Thermal Conductivity	К	18.21	W/m-K
Specific Heat	Cp	804*	J/kg-K
Density	ρ	2347	kg/m ³
Stefan Boltzman's Constant	σ	5.67E-8	
Emmissivity	3	0.96	

* Parameters required by transient simulation method

Validation of transient aspect of the model

- Compare the results of the simulation with that of the lumped thermal heat capacity model.
- System undergoing a transient thermal response to a heat transfer process has a nearly uniform temperature and small differences of temperature within the system can be ignored.
- The model is valid only if the Biot number (hL/k) < 0.1
- The governing equation is [1]

$$\rho V C_p \frac{dT}{dt} = -hA(T - T_e)$$

 To solve this equation, one initial condition is required: t=0: T=T_o

Solving the equation, the temperature at any time,t can be calculated from:

$$\frac{T-T_e}{T_o-T_e} = e^{-(hA/\rho V C_p)t}$$

where T_o is the initial surface temperature, T_e is the ambient temperature.

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

Simulation Parameters – Validation of transient aspect of the model

Label	Symbol	Value	Units
Outer Radius of Refractory	r _o	67.5	mm
Bulk Refractory Wall Thickness	t	29.5	mm
Initial Nozzle Temperature	T _{intital}	1100	°C
Ambient Temperature	T _{ambient}	27	°C
External Convection heat transfer Coefficient (Free)	h _{ambient}	7.3	W/(m²K)
Thermal Conductivity	к	1000	W/m-K
Specific Heat	Cp	804	J/kg-K
Density	ρ	2347	kg/m³
Stefan Boltzman's Constant	σ	5.67E-8	
Emmissivity	3	0.96	

Varun Kumar Singh

tinuous Casting

onsortium

Comparison of Results of lumped model and transient simulation

• The results of the simulation are in good agreement with that of the lumped thermal heat capacity model

Calculation of Flame temperature and heat transfer coefficients

Input Page of the tool

Select Fuel	Methane Heliane Anelylene Propane	v	Select Sheet to View	Conjustion Products Requesties Conjustion Products Products New How Rate Calculation Press Convertion	View
Amount of Froexs Air (S.)	100			Parcel Correction Flame Temperature Carbon Decade Properties Water Properties	
Gravity	9,81	m/s*	1	Cayger Properties	
Ambient Lemperature	000	K] [Entralpy of Formation Output	
Nozzle Orifice Area	4.42E-01	inch ²]		
Mass Flow Rate	0.035	kg/s	1		
Characteristic Diameter	0.076	m]		
Friction Factor	0.03		-		

- It is assumed that the fuel is burning in air.
- The user is asked to select the fuel and amount of excess air relative to the stoichiometric amount.
- The nozzle orifice area is required to calculate the mass flow rate.
- The mass flow rate sheet of the tool calculates the mass flow rate for range of pressures. The user should select the mass flow rate desired and input on this page.

Properties of mixture of gases in combustion products

• Thermal conductivity of the mixture of gases is calculated using Saxena and Mason [3]: $\lambda_{m} = \sum_{i=1}^{n} \frac{y_{i}\lambda_{i}}{1-y_{i}\lambda_{i}}$

$$L_m = \sum_{i=1}^{n} \frac{y_i \kappa_i}{\sum_{j=1}^{n} y_j A_{ij}}$$

Where

 λ_m = the thermal conductivity of the gas mixture λ_i = the thermal conductivity of pure i

 \mathcal{Y}_i , \mathcal{Y}_j = mole fractions of component i and j

$$A_{ij} = \frac{\left[1 + (\eta_{i} / \eta_{j})^{1/2} (M_{j} / M_{i})^{1/4}\right]^{2}}{\left[8 (1 + M_{i} / M_{j})^{1/2}\right]^{1/2}}$$
$$A_{ji} = \frac{\eta_{j}}{\eta_{i}} \frac{M_{i}}{M_{j}} A_{ij}$$

Metals Processing Simulation Lab

Where η_i , η_i are the viscosities of pure i and j respectively

And M_{i} , M_{j} are the molecular weights of pure i and j

• Thermal diffusivity, kinematic viscosity, density and specific heat are calculated using the particle mixture rule.

```
University of Illinois at Urbana-Champaign
```

nuous asting Consortium

Combustion reaction and flame temperature calculation

- Stoichiometric Reaction $CH_4 + 2O_2 + 7.5N_2 \rightarrow CO_2 + 2H_2O + 7.5N_2$
- Reaction with 100 % excess air
 - $CH_4 + 4O_2 + 15N_2 \rightarrow CO_2 + 2H_2O + 15N_2 + 2O_2$
- Flame temperature calculation [4] The enthalpy of formation of products is balanced with that of the reactants:

$$\sum_{p} n_{e} \overline{h_{e}} = \sum_{R} n_{i} \overline{h_{i}} \implies \sum_{p} n_{e} (\overline{h_{f}^{\circ}} + \Delta \overline{h})_{e} = \sum_{R} n_{i} (\overline{h_{f}^{\circ}} + \Delta \overline{h})_{i} \implies \sum_{p} n_{e} (\Delta \overline{h})_{e} = \sum_{R} n_{i} (\Delta \overline{h})_{i} + \sum_{R} n_{i} \overline{h_{fi}^{\circ}} - \sum_{p} n_{e} \overline{h_{fe}^{\circ}}$$

$$\implies \sum_{p} n_{e} (\Delta \overline{h})_{e} = \sum_{R} n_{i} \overline{h_{fi}^{\circ}} - \sum_{p} n_{e} \overline{h_{fe}^{\circ}}$$

$$\implies (\overline{\Delta h})_{CO_{2}} + 2 (\overline{\Delta h})_{H_{2O}} + 7.5 (\overline{\Delta h})_{N_{2}} = \left[(\overline{h_{f}^{\circ}})_{CH_{4}} + 2 (\overline{h_{f}^{\circ}})_{O_{2}} + 7.5 (\overline{h_{f}^{\circ}})_{N_{2}} \right]$$

$$- \left[(\overline{h_{f}^{\circ}})_{CO_{2}} + 2 (\overline{h_{f}^{\circ}})_{H_{2O}} + 7.5 (\overline{h_{f}^{\circ}})_{N_{2}} \right]$$

• Balancing the enthalpy of formation in the above equation gives the flame temperature

18

Varun Kumar Singh

Validation of flame temperature calculation

- The tool was run for methane fuel and 100 % excess air.
- The results were compared with a commercial software Gaseq.
- The flame temperature calculated from the tool is 1480.6 K
- The results from the tool are shown in the figure below:

Problem Typ Adiabatic T	e and composition at co	nst P 🛨	Frozen Cher	mistry	Input File F	t <mark>age <u>T</u>itle</mark> revious <u>N</u> e	xt
Species N2 O2 CH4	No.Moles MolFrac 15.0000 0.75000 4.00000 0.20000 1.00000 0.05000	¥ K	View S Add Clear <u>R</u> eacts Clear All R	pecies Delete Clear <u>P</u> rods ≥>P R≤ <p< th=""><th>Species N2 H2O CO2 CO 02 OH H</th><th>Products No.Moles 14.9919 1.99943 0.99999 1.134e-05 1.99164 0.00112 1.859e.07</th><th>MolFrac 0.74958 0.09997 0.05000 5.67e-07 0.09958 5.60e-05 9 30e-09</th></p<>	Species N2 H2O CO2 CO 02 OH H	Products No.Moles 14.9919 1.99943 0.99999 1.134e-05 1.99164 0.00112 1.859e.07	MolFrac 0.74958 0.09997 0.05000 5.67e-07 0.09958 5.60e-05 9 30e-09
Stoichiometr N O C H Calculate (y, Phi 0.500 Set. Reactants F10) 298 1.0	. UniformT Tempera Pressu	ature, K	Products 1480.3	H O H2 NO	1.859e-07 1.933e-05 9.098e-06 0.01616	9.30e-09 9.66e-07 4.55e-07 8.08e-04

• The two tools are found to be in good agreement.

University of Illinois at Urbana-Champaign	•	Metals Processing Simulation Lab	•	Varun Kumar Singh	•	19

- The Churchill and Chu [1] equation for flow over a vertical flat plate is used

$$N u_{avg} = \left\{ 0.825 + \frac{\left[0.387 R a^{1/6}\right]}{\left[1 + \left(\frac{0.429}{P r}\right)^{9/16}\right]^{8/27}} \right\}$$

• Forced Convection from flame: The Petukhov, Kirillov, and Popov [1] is used

$$Nu = \frac{\left[(f/8) \operatorname{Re}_{D} \operatorname{Pr} \right]}{\left[1.07 + 12.7(f/8)^{1/2} (\operatorname{Pr}^{2/3} - 1) \right]}$$

- The forced heat transfer coefficient was calculated to be 49.3 W/m²K.
- The free heat transfer coefficient was calculated to be 6.9 W/m²K

Conclusions

- Alumina graphite nozzle reaches 5% higher temperature than doloma graphite (700 vs 670 °C) after equal preheat time of 1hour), so skulling is about the same.
- Air entrainment should be decreased, because excess air reduces the flame temperature.
- The mass flow rate of the reactants should be increased to have a higher heat transfer coefficient, thereby increasing nozzle temperatures after preheat.
- Steady state is not reached even after an hour of preheating of a nozzle (with 30-mm thick wall). The preheating time should be increased.

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

References

- 1. Incropera, F.P., and Dewitt, P.D., 2002, *Fundamentals of Heat and Mass Transfer,* John Wiley and Sons, New York.
- Thomas, B.G. and B. Ho, "Spread Sheet Model of Continuous Casting," Journal of Engineering for Industry, ASME, New York, NY, Vol. 118, No. 1, 1996, pp. 37-44.
- 3. Poling, B.E., O'Connell J.M., and Prausnitz, J.M., 2001, *The Properties of Gases and Liquids,* McGraw-Hill, New York.
- 4. Moran, J.M., and Shapiro, H.N., 2004, *Fundamentals of Engineering Thermodynamics,* John Wiley and Sons, New York.
- 5. Report on "Modeling of Tundish Nozzle Preheating" by J. Mareno and B.G. Thomas.

24

Varun Kumar Singh

- Continuous Casting Consortium Members (ABB, Arcelor-Mittal, Baosteel, Corus, Delavan/Goodrich, LWB Refractories, Nucor, Nippon Steel, Postech, Steel Dynamics, ANSYS-Fluent)
- Rob Nunnington

University of Illinois at Urbana-Champaign

• Rajneesh Chaudhary and other Graduate students at Metals Processing Simulation Laboratory, UIUC.

Metals Processing Simulation Lab

Varun Kumar Singh